Characterizing Driving Styles with Deep Learning

نویسندگان

  • Weishan Dong
  • Jian Li
  • Renjie Yao
  • Changsheng Li
  • Ting Yuan
  • Lanjun Wang
چکیده

Characterizing driving styles of human drivers using vehicle sensor data, e.g., GPS, is an interesting research problem and an important real-world requirement from automotive industries. A good representation of driving features can be highly valuable for autonomous driving, auto insurance, and many other application scenarios. However, traditional methods mainly rely on handcrafted features, which limit machine learning algorithms to achieve a better performance. In this paper, we propose a novel deep learning solution to this problem, which could be the first attempt of studying deep learning for driving behavior analysis. The proposed approach can effectively extract high level and interpretable features describing complex driving patterns from GPS data. It also requires significantly less human experience and work. The power of the learned driving style representations are validated through the driver identification problem using a large real dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoencoder Regularized Network For Driving Style Representation Learning

In this paper, we study learning generalized driving style representations from automobile GPS trip data. We propose a novel Autoencoder Regularized deep neural Network (ARNet) and a trip encoding framework trip2vec to learn drivers’ driving styles directly from GPS records, by combining supervised and unsupervised feature learning in a unified architecture. Experiments on a challenging driver ...

متن کامل

Prediction of Iranian EFL Learners’ Learning Approaches Through Their Teachers’ Narrative Intelligence and Teaching Styles: A Structural Equation Modelling Analysis

It goes without saying that there are many influential factors affecting the success of any learning experience, and teachers are definitely among the significant factors influencing the process of teaching and learning. In this respect, the present study sought to investigate the prediction of Iranian English as a Foreign Language (EFL) learners' learning approaches through their teachers’ nar...

متن کامل

Characterizing Stylistic Elements in Syntactic Structure

Much of the writing styles recognized in rhetorical and composition theories involve deep syntactic elements. However, most previous research for computational stylometric analysis has relied on shallow lexico-syntactic patterns. Some very recent work has shown that PCFG models can detect distributional difference in syntactic styles, but without offering much insights into exactly what constit...

متن کامل

Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches

Analysis and recognition of driving styles are profoundly important to intelligent transportation and vehicle calibration. This paper presents a novel driving style analysis framework using the primitive driving patterns learned from naturalistic driving data. In order to achieve this, first, a Bayesian nonparametric learning method based on a hidden semi-Markov model (HSMM) is introduced to ex...

متن کامل

Towards Better Understanding the Clothing Fashion Styles: A Multimodal Deep Learning Approach

In this paper, we aim to better understand the clothing fashion styles. There remain two challenges for us: 1) how to quantitatively describe the fashion styles of various clothing, 2) how to model the subtle relationship between visual features and fashion styles, especially considering the clothing collocations. Using the words that people usually use to describe clothing fashion styles on sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1607.03611  شماره 

صفحات  -

تاریخ انتشار 2016